	

	DOCUMENTTYPE
	
	4 (4)

	
	
	
	

	TypeUnitOrDepartmentHere
	
	
	

	TypeYourNameHere
	TypeDateHere
	
	

Touch support in Python for S60
1. Introduction
S60 5th Edition introduced a new user interaction model supporting Touch UI and tactile feedback. As a result of this change, all the UI components now responds to touch events and their behavior can be customized. This version of Python for S60 adds touch pointer event support to the Canvas object. All other UI widgets like Listbox, Text, Form etc. created using Python for S60 work as expected on 5th Edition.
2. Check for touch support at runtime
The appuifw module provides an API to test for touch support at runtime. This returns ‘True’ if the device supports touch input and False otherwise.

appuifw.touch_enabled()
Return: True if touch input is supported, False otherwise.

3. Canvas Type
Canvas is a UI control that provides a drawable area on the screen and support for handling raw key events and Touch pointer events.
class Canvas([redraw_callback=None, event_callback=None, resize_callback=None])

Constructs a Canvas. The optional parameters are callbacks that are called when specific events occur.
On devices that support touch based input, the argument to the event_callback is a dictionary containing the details related to the pointer event in the format (remains unchanged for non-touch devices):
'type': one of the several pointer events - EButton1Up, EButton1Down, EDrag etc..
'modifiers': the modifiers that apply to this pointer event
‘pos’: A tuple containing the x-y pointer co-ordinates
The Pointer event types are defined in key_codes.py. When the touch screen is touched the EButton1Down event is generated, EDrag while the finger/stylus is dragged across the screen and then EButton1Up when the finger/stylus is lifted.
4. Canvas Bind
The Canvas bind () method can be used to listen to specific pointer events. The bind method can also take a third optional argument which specifies the area of the screen to be monitored for this specific pointer event.
bind(pointer_event, callable, [((x1,y1), (x2,y2))])
The pointer_event can be any one of the Pointer events listed in key_codes.py. The most common pointer events are:
EButton1Down - Pen down event
EButton1Up – Pen Up event
EDrag – Drag event (This event is only received when button 1 is down)
ESwitchOn - Switch on event caused by a screen tap.
((x1, y1), (x2, y2)) is an optional argument that can be passed to specify the screen area to monitor for any specific pointer event. The two co-ordinate tuple corresponds to the top-left and bottom-right points.
There are several ways in which bind can be used:
my_canv.bind(EButton1Up, callback) – The callback is called when EButton1Up event is generated anywhere in the canvas.
my_canv.bind(EButton1Up, green_callback, ((x1, y1), (x2, y2))) – The callback is called when the EButton1Up pointer event occurs inside the screen area specified.
my_canv.bind(EButton1Up, yellow_callback, ((x3, y3), (x4, y4))) – Registers another callback for a different region but for the same pointer event. When two screen areas overlap, the callback registered last will be called when pointer events occur in the intersected region.
my_canv.bind(EButton1Up, callback3, ((x1, y1), (x2, y2))) – If the pointer event and the screen area to be monitored are the same, the callback passed will replace the old callback already registered.
my_canv.bind(EButton1Up, None, ((x1, y1), (x2, y2))) – If the pointer event and the screen area to be monitored are the same, and the callback passed is None, the callback registered previously is cleared.
my_canv.bind(EButton1Up, None) - All callbacks previously registered for this pointer event are cleared, regardless of whether it was for a specific screen area or for the entire canvas.

[image: image1]
Clicking on the white spot should result in Green_callback to be called.

Clicking on the Red spot should result in Yellow callback to be called in both the scenarios shown above provided the yellow_callback was registered last.
Clicking on the Purple spot should result in Yellow callback to be called.
Example:

Refer to scribble.py in extras directory which exercises almost all of the above scenarios.
Scenario Two

Scenario One

yellow_callback

Yellow callback

green_callback

yellow callback

green_callback

_935227290.doc

