PyS60 Library Reference
Release 1.4.1 final

04 July 2007

Nokia

Copyright (©) 2004-2007 Nokia Corporation.

This is Python for S60 version 1.4.1 final created by Nokia Corporation. Files added by Nokia Corpo-
ration are licensed under Apache License Version 2.0. The original software, including modifications of
Nokia Corporation therein, is licensed under the applicable license(s) for Python 2.2.2, unless specifically
indicated otherwise in the relevant source code file.

See http://www.apache.org/licenses/LICENSE-2.0 and http://www.python.org/2.2.2/license.html

Abstract

The Python for S60 Platform (Python for S60) simplifies application development and provides a scripting
solution for the Symbian C++ APIs. This document is for Python for S60 version 1.4.1 final that is
based on Python 2.2.2.

Introduction

1.1 Scope
1.2 Audience
1.3 Naming Conventions

API Summary

2.1 Python Standard Library
2.2 Python for S60 Extensions . . .
2.3 Third-Party Extensions

CONTENTS

Selected Issues on Python Programming for S60

3.1 Concurrency Aspects
3.2 Running Python for S60 Scripts
3.3 Standard I/O Streams
3.4 Usage of Unicode
3.5 Dateand Time
3.6 Limitations of Thread Support .
3.7 Scalable User Interface
3.8 Error Handling

3.9 Limitations and Areas of Development oL

Operating System Services and Information
4.1 e32 — A Symbian OS related services package L.
4.2 sysinfo — Access to system information oL Lo oL

User Interface and Graphics

5.1 appuifw — Interface to the S60 GUI framework
5.2 graphics — A graphics related services package
5.3 camera — Interface for taking photographs and video recording
5.4 keycapture — Interface for global capturing of key events.
5.5 topwindow — Interface for creating windows that are shown on top of other applications.

5.6 gles — Bindings to OpenGL ES

5.7 glcanvas — UI Control for Displaying OpenGL ES Graphics.
5.8 sensor — Module to access the device sensors.

Audio and Communication Services
6.1 audio — An audio related services package oo

6.2 telephone — Telephone services

6.3 messaging — A messaging services package Lo
6.4 inbox — Interface to device inbox
6.5 location — GSM location information oo oL
6.6 positioning — Simplified interface to the position information

Data Management

13
13
27
33
36
37
38
45
46

49
49
o1
52
53
54
95

59

7.1
7.2
7.3
7.4
7.5

contacts — A contacts related services package L.
calendar — Access to calendar related services L.
calendar for EKA2 — Access to calendar related services
e32db — Interface to the Symbian native DB. o000
e32dbm — DBM implemented using the Symbian native DBMS

Standard Library Support and Extensions

8.1
8.2

Support for Python Standard Library 0.
Extensions to Standard Library Modules L.

Extending and Embedding

9.1
9.2

Python/C API Extensions i
Extending Python for S60 L

10 Terms and Abbreviations

A Reporting Bugs

Module Index

Index

79
79
80

83
83
84

87

91

93

95

CHAPTER
ONE

Introduction

The Python for S60 Platform (Python for S60) simplifies application development and provides a scripting
solution for the Symbian C++ APIs. This document is for Python for S60 release 1.4.1 final that is
based on Python 2.2.2.

The documentation for Python for S60 includes three documents:

e Getting Started with Python for S60 Platform [5] contains information on how to install Python
for S60 and how to write your first program.

e This document contains API and other reference material.

e Programming with Python for S60 Platform [6] contains code examples and programming patterns
for S60 devices that can be used as a basis for programs.

The Python for S60 as installed on a S60 device consists of:

e Python runtime package that consists of:

— Python interpreter DLL
— Standard and proprietary Python library modules
— S60 UI application framework adaptation component (a DLL) that connects the scripting
domain components to the S60 Ul
e Python script shell package that consists of:
— an application written in Python and visible in the application menu of the device that provides
an execution environment for Python scripts.

— For S60 platform versions prior to 3rd Edition: Python Installer program for installing Python
files on the device, which consists of:

* A recognizer plug-in that recognizes .py, .pyc, .pyd and .pyo files as belonging to Python.

* Symbian application written in Python that handles the installation of recognized Python
files into the script shell environment.

A plugin for the S60 C++ SDK is also available. This plugin makes it possible to run Python scripts in
the S60 emulator environment and to compile Python extension modules (PYDs) for the emulator and
the device.

The Python for S60 developer discussion board [9] on the Forum Nokia Web site is a useful resource for
finding out information on specific topics concerning Python for S60. You are welcome to give feedback
or ask questions about Python for S60 through this discussion board.

1.1 Scope

This document includes the information required by developers to create applications that use Python
for S60, and some advice on extending the platform.

1.2 Audience

This guide is intended for developers looking to create programs that use the native features and re-
sources of the S60 phones. The reader should be familiar with the Python programming language
(http://www.python.org/) and the basics of using Python for S60 (see Getting Started with Python for S60
Platform [5]).

1.3 Naming Conventions

Most names of the type ESomething typically indicate a constant defined by the Symbian SDK. More
information about these constants can be found in the Symbian SDK documentation.

2 Chapter 1. Introduction

CHAPTER
TWO

APl Summary

All built-in object types of the Python language are supported in the S60 environment. The rest of the
programming interfaces are implemented by various library modules as summarized in this chapter.

2.1 Python Standard Library

Python for S60 platform distribution does not include all of the Python’s standard and optional library
modules to save storage space in the phone. Nevertheless, many of the excluded modules also work in
the S60 Python environment without any modifications. Some modules are included in the SDK version
but not installed in the phone. For a summary of supported library modules, see Chapter 8.

When Python, available at http://www.python.org/, is installed on a PC, the library modules are by default
located in “\Python22\Lib’ on Windows and in ‘/usr/lib/python2.2’ on Linux. The Python library modules’
APIs are documented in [1].

Python for S60 extends some standard modules. These extensions are described in this document, see
Chapter 8.2.

2.2 Python for S60 Extensions

There are two kinds of native C++ extensions in the Python for S60 Platform: built-in extensions and
dynamically loadable extensions.

2.2.1 Built-in extensions

There are two built-in extensions in the Python for S60 package:

e The e32 extension module is built into the Python interpreter on Symbian OS, and implements
interfaces to special Symbian OS Platform services that are not accessible via Python standard
library modules.

e The appuifw module for Python for S60 Platform offers UI application framework related Python
interfaces.

2.2.2 Dynamically loadable extensions
These dynamically loadable extension modules provide proprietary APIs to S60 Platform’s services:

e graphics: see Chapter 5.2
e e32db: see Chapter 7.4

e messaging: see Chapter 6.3

e inbox: see Chapter 6.4

e location: see Chapter 6.5
e sysinfo: see Chapter 4.2

e camera: see Chapter 5.3

e audio: see Chapter 6.1

e telephone: see Chapter 6.2
e calendar: see Chapter 7.2
e contacts: see Chapter 7.1
e keycapture: see Chapter 5.4
e topwindow: see Chapter 5.5
e gles: see Chapter 5.6

e glcanvas: see Chapter 5.7

2.3 Third-Party Extensions

It is also possible to write your own Python extensions. S60 related extensions to Python/C APT are
described in Chapter 9.1. For some further guidelines on writing extensions in C/C++, see Chapter 9.2.
In addition, for an example on porting a simple extension to S60, see [6].

4 Chapter 2. APl Summary

CHAPTER
THREE

Selected Issues on Python Programming for
S60

The following issues must be considered when using Python on S60.

3.1 Concurrency Aspects

The thread that initializes the Python interpreter becomes the main Python thread. This is usually the
main thread of a Ul application. When an application written in Python launches, the Symbian platform
infrastructure creates the main UI thread that starts the Python environment. If a Python program is
started as a server with e32.start_server, then the Python main thread is not a UI thread.

It is possible to launch new threads via the services of thread module. Examples of such situations could
be to overcome eventual problems with the fixed, relatively small stack size of the main Ul application
thread; or to perform some background processing while still keeping the UI responsive. These new
threads are not allowed to directly manipulate the UI; in other words, they may not use the appuifw
module.

Because of the limitations of the Python interpreter’s final cleanup, Python applications on the Symbian
OS should be designed in such a way that the main thread is the last thread alive.

A facility called active object is used extensively on the Symbian OS to implement co-operative, non-
preemptive scheduling within operating system threads. This facility is also utilized with native APIs. A
Python programmer is exposed to related concurrency issues particularly in Ul programming. Preserving
the responsiveness of the Ul with the help of active objects needs to be considered when designing the
application logic. At the same time it is necessary to take into account the resulting concurrent behavior
within the application when active objects are used. While the main execution path of a UI script is
blocked in wait for an active object to complete — either explicitly as a result of using e32.A0_lock, or
indirectly within some other Python API implementation — the Ul-related callbacks may still get called.

The standard thread.lock cannot normally be used for synchronization in the UI application main
thread, as it blocks the UI event handling that takes place in the same thread context. The Symbian
active object based synchronization service called e32.Ao_lock has been implemented to overcome this
problem. The main thread can wait in this lock, while the UI remains responsive.

Python for S60 tries to minimize the unwanted exposure of a Python programmer to the active objects
of the Symbian OS. The programmer may choose to implement the eventual concurrent behavior of the
application with normal threads. However, certain active object based facilities are offered as an option
in the €32 module.

3.2 Running Python for S60 Scripts

The current options for installing Python scripts to a S60 device are: a stand-alone installation to the
device’s main application menu, and an installation to a folder hierarchy maintained by the Python script

shell. For more details on this topic, see Programming with Python for S60 Platform [6]. In the first
case the script application is launched via application menu, and it executes in its own process context.
The latter case is suitable for development, testing, and trying out new scripts.

The Python script shell delivered with Python for S60 package has itself been written in Python. It is a
collection of scripts that offer an interactive Python console and a possibility to execute scripts located
in the directory of the script shell. Due to this kind of design the scripts are not fully isolated from each
other. This means that any changes a script makes in the script shell namespace are visible to other
scripts as well. This may be helpful during the development of a script suite, as long as care is taken to
avoid unwanted interference between scripts.

For some special issues to consider when writing Python scripts to be run in the current Python script
shell, see Programming with Python for S60 Platform [6]. These include the arrangements for standard
output and the maintenance of the Options menu contents.

Note: Note that unlike some previous releases, the current version of the Python for S60 script shell
takes care of restoring appuifw.app.menu, appuifw.app.title, appuifw.app.exit_key_handler,
appuifw.app.screen, appuifw.app.body, sys.stderr and 7?7 after a script has been run, and The
application programmer doesn’t need to save and restore these settings.

3.3 Standard 1/O Streams

The standard Python I/0 streams in the sys module are by default connected to underlying C STDLIB’s
stdio streams that in turn are terminated by dummy file descriptors. Usually Python scripts set the
I/0 streams suitably by manipulating them at Python level via sys module interface. The e32 extension
module offers a Python interface for attaching to C STDLIB’s output streams, but this service is only
recommended for debugging purposes. The e32._stdo function takes as its argument the name of the
file where C STDLIB’s stdout and stderr are to be redirected. This makes it possible to capture the
low-level error output when the Python interpreter has detected a fatal error and aborts.

3.4 Usage of Unicode

No changes have been made to the standard library modules with regard to string argument and return
value types. S60 extensions generally accept both plain strings and Unicode strings as arguments, but
they return only Unicode strings. APIs that take string arguments for the purpose of showing them on
the Ul expect Unicode strings. Giving something else may result in garbled appearance of the text on
the screen.

3.5 Date and Time

Unix time, seconds since January 1, 1970, 00:00:00 UTC (Coordinated Universal Time), is generally used
as the time format in the Python for S60 APIs described in this document. The float type is used for
storing time values.

3.6 Limitations of Thread Support

Python for S60 supports starting native threads via the standard thread module. However, the native
APIs Python for S60 uses have certain limitations that a Python programmer must be aware of.

Objects that wrap native resources can typically be used only in the thread they are created in. This is
because native resources cannot be shared between native threads. Examples:

Note:

6 Chapter 3. Selected Issues on Python Programming for S60

e Symbian OS STDLIB implementation has some limitations that are reflected at OS module support
(see S60 SDK documentation [4]). For example, STDLIB file descriptors cannot be shared between
threads, and for that reason, Python file objects cannot either.

e Sockets as implemented in the S60 version of the socket module.

Warning: Trying to use native objects from the wrong thread can crash the interpreter. If display of
panic codes is enabled, a typical panic code displayed in this case is “KERN-EXEC 3”.

3.7 Scalable User Interface

Note: S60 2nd Edition FP3 and further releases.

S60 2nd Edition FP3 enables a new feature called scalable user interface. For Python developers this
feature is currently visible in new APIs supporting the scalable Ul, icon loading, and new screen resolu-
tions. For more information on scalable user interface, see Section 5.1.8, Icon Type of this document, as
well as Programming with Python for S60 Platform [6].

3.8 Error Handling

The APIs described in this document may raise any standard Python exceptions. In situations where a
Symbian error code is returned, its symbolic name is given as the value parameter of a SymbianError
exception.

In case where the functions have nothing special to return, they return None on success.

3.9 Limitations and Areas of Development

Some OS level concepts to which the standard os library module offers an interface do not exist as such
in Symbian OS environment. An example of this is the concept of current working directory.

Reference cycle garbage collection is not in use. Because of this, special care needs to be taken to
dismantle cyclic references when a Python program exits. This prevents error messages related to native
resources that are left open. The problem could be removed by developing support for collection of cyclic
garbage or by performing a special cleanup action on interpreter exit. The gc module has been ported
to the Symbian OS, and it has been verified to work. However, the current distribution has been built
without gc support.

3.7. Scalable User Interface 7

CHAPTER
FOUR

Operating System Services and Information

4.1 e32 — A Symbian OS related services package

The €32 module offers Symbian OS related utilities that are not related to the Ul and are not provided
by the standard Python library modules.

4.1.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the €32 module:

ao_yield()
Yields to the active scheduler to have ready active objects with priority above normal scheduled for
running. This has the effect of flushing the eventual pending Ul events. Note that the UI callback
code may be run in the context of the thread that performs an ao_yield. For information on
active scheduler, see S60 SDK documentation [4].

ao_sleep (interval [, callback])
Sleeps for the given interval without blocking the active scheduler. When the optional callback is
given, the call to ao_sleep returns immediately and the callback gets called after interval. See
also Section 4.1.3, Ao_timer Type.

ao_callgate (wrapped_callable)
Wraps wrapped_callable into returned callable object callgate that can be called in any thread. As
a result of a call to callgate, wrapped_callable gets called in the context of the thread that originally
created the callgate. Arguments can be given to the call. This is actually a simple wrapping of the
Symbian active object facility.

drive_list()
Returns a list of currently visible drives as a list of Unicode strings ’><driveletter>:’

file_copy(target_name, source_name)
Copies the file source_name to target_name. The names must be complete paths.

in_emulator()
Returns 1 if running in an emulator, or 0 if running on a device.

set_home_time (time)
Set the device’s time to time (see Section 3.5).

pys60_version
A string containing the version number of the Python for S60 and some additional information.

Example:

>>> import e32
>>> e32.pys60_version
’1.2 final’

pys60_version_info

A tuple containing the five components of the Python for S60 version number: major, minor, micro,
release tag, and serial. All values except release level are integers; the release tag is a string. A value
other than *final’ for the release tag signifies a development release. The pys60_version_info
value corresponding to the Python for S60 version 1.2 is (1, 2, 0, ’final’, 0).

s60_version_info
The SDK version with which this Python was compiled (tuple). The following values are possible:

e(1, 2) for S60 1st Edition

e (2, 0) for S60 2nd Edition

(2, 6) S60 2nd Edition Feature Pack 2
e (2, 8) S60 2nd Edition Feature Pack 3
e (3, 0) S60 3rd Edition

Examples:

>>> import e32

>>> e32.pys60_version
’1.2.0 final’

>>> e32.pys60_version_info
(1, 2, 0, ’final’, 0)

>>> e32.s860_version_info
(2, 0)

>>>

is_ui_thread()
Returns True if the code that calls this function runs in the context of the UI thread; otherwise
returns False.

start_exe (filename, command [,wait])
Launches the native Symbian OS executable filename (Unicode) and passes it the command string.
When wait is set, the function synchronously waits for the exit of the executable and returns a
value that describes the exit type. Possible values are 0 for normal exit and 2 for abnormal exit.

start_server (filename)
Starts the Python script in file filename (Unicode) as a server in its own process. Note that appuifw
module is not available to a server script.

reset_inactivity()
Resets the timers since the user was last active. As a consequence, the device backlight is normally
turned on when this function is invoked.

inactivity ()
Returns the time in seconds since the user of the device was last active.

4.1.2 Ao_lock Type

class Ao_lock()
Creates an Ao_lock instance. A Symbian active object based synchronization service. This can
be used in the main thread without blocking the handling of UI events. The application should
not exit while a thread is waiting in Ao_lock. If Ao_lock.wait is called while another wait call
is already in progress, an AssertionError is raised.

Instances of Ao_lock type have the following methods:

wait()
If the lock has already been signaled, returns immediately. Otherwise blocks in wait for the lock
to be signaled. Only one waiter is allowed, so you should avoid recursive calls to this service. wait
can only be called in the thread that created the lock object. During the wait, other Symbian-
active objects are being served, so the UI will not freeze. This may result in the UI callback code

10 Chapter 4. Operating System Services and Information

being run in the context of the thread that is waiting in Ao_lock. This must be considered when
designing the application logic.

signal()
Signals the lock. The waiter is released.

4.1.3 Ao_timer Type

The rationale for the Ao_timer type is that you cannot cancel a pending e32.ao_sleep. This is
problematic if e.g. the user exits an application which is sleeping. In this case a panic would occur
since the sleep is not cancelled - this is the reason you should avoid using e32.ao_sleep and instead
use the Ao_timer with appropriate cancel calls if there is for example a possibility for the user to exit
the application during a sleep.

class Ao_timer ()
Creates an Ao_timer instance. A Symbian active object based sleeping service. This can be used
in the main thread without blocking the handling of UI events. The application should not exit
while a thread has a pending after call in Ao_timer. Only one after invocation can be pending
at time for each instance of this type.

Instances of Ao_timer type have the following methods:

after (interval [, callback])
Sleeps for the given interval without blocking the active scheduler. When the optional callback is
given, the call to after returns immediately and the callback gets called after interval.

cancel()
Cancels a pending after call.

4.2 sysinfo — Access to system information

The sysinfo module offers an API for checking the system information of a S60 mobile device.
Note: The method ring_type is not available for S60 1st Edition.
The sysinfo module has the following functions:

active_profile()
Returns the current active profile as a string, which can be one of the following: ’general’,
’silent’, ’meeting’, ’outdoor’, ’pager’, ’offline’, , ’drive’, or ’user <profile
value>’.

battery ()
Returns the current battery level. On devices based on S60 2nd Edition Feature Pack 1 (S60 2.1)
or earlier the value ranges from 0 (empty) to 7 (full). On newer devices the value ranges from 0
(empty) to 100 (full). On the emulator the value is always 0.

Note: The returned value may be incorrect while the device is being charged.

display_twips()
Returns the width and height of the display in twips. For a definition of a twip, see Chapter 10,
Terms and Abbreviations.

display_pixels()
Returns the width and height of the display in pixels.

free_drivespace()
Returns the amount of free space left on the drives in bytes, for example {u’C:’> 100}. The keys
in the dictionary are the drive letters followed by a colon ().

imei()
Returns the IMEI code of the device as a Unicode string or, if running on the emulator, the
hardcoded string u’000000000000000°.

4.2, sysinfo — Access to system information 11

max_ramdrive_size()
Returns the maximum size of the RAM drive on the device.

total_ram()
Returns the amount of RAM memory on the device.

free_ram()
Returns the amount of free RAM memory available on the device.

total_rom()
Returns the amount of read-only ROM memory on the device.

ring_type()
Not supported in 1st Edition! Returns the current ringing type as a string, which can be one
of the following: ’normal’, ’ascending’, ring_once’, ’beep’, or ’silent’.

os_version()
Returns the operating system version number of the device as a three element tuple (major version,
minor version, build number). The elements are as follows':

eThe major version number, ranging from 0 to 127 inclusive
eThe minor version number, ranging from 0 to 99 inclusive

eThe build number, ranging from 0 to 32767 inclusive.

signal_bars()
Returns the current network signal strength ranging from 0 to 7, with 0 meaning no signal and 7
meaning a strong signal. If using an emulator, value 0 is always returned.

signal_dbm()
Returns the current network signal strength in dBm. This is available SDK 2.8 onwards. If using
an emulator value 0 is always returned.

sw_version()
Returns the software version as a Unicode string. On the emulator, returns the hardcoded string
u’emulator’. For example, a software version can be returned as u’V 4.09.1 26-02-04 NHL-10
(c) NMP’.

IDescriptions for these values are based on information found in S60 SDK documentation [4].

12 Chapter 4. Operating System Services and Information

CHAPTER
FIVE

User Interface and Graphics

5.1 appuifw — Interface to the S60 GUI framework

The appuifw module offers an interface to the S60 UI application framework. Figure 5.1 provides an
overview of the Python for S60 environment for UI application programming.

Note: The services of this interface may only be used in the context of the main thread, that is, the
initial thread of a UI application script.

5.1.1 Basics of appuifw Module

Figure 5.2 shows the layout of a S60 application Ul in the normal screen mode and a summary of how
it relates to the services available at the appuifw API. For alternative layouts, see Figure 5.3.

The main application window may be set up to be occupied by a UI control.

A multi-view application can show the different views as tabs in the navigation pane and react as the
users navigate between tabs.

Dialogs always take precedence over the usual Ul controls and appear on top of them.

UI controls are implemented as Python types. These types are available:

o Text
e Listbox
e Canvas

UI controls appear on the screen as soon as an instance of the corresponding Python type is set to the
body field (app.body) of the current application UI.

Form is a versatile dialog implemented as a type.

The Content_handler type facilitates interfacing to other UI applications and common high-level Ul
components. It is based on the notion that designated handlers can reduce Ul application interaction to
operations on MIME-type content.

The following dialogs are implemented as functions:

® note

e query

e multi_query

e selection_list

e multi_selection_list

13

1

Python for 560
Ul appication
T
I -H-‘_\-H_"'"'--._‘___H-‘
—
y B
—
apputw P wthon &P T Python AP
graphics
1
Series 60Ul / Inage
elements —
Contert_hamller Canvas o
— 7 =
.-:-""r
._..-I"F'-H-F
I g
Series 60
Conmmon Ul .
Series 60 U1 -
H application Symbian GDI
<< [ESMINCe>>
Figure 5.1: Python for S60 UI environment overview
Title
"appuifw.app.title”
Havigation pane
"appuifwapp.enable_tabs() activate taly)”
Main applic ation window
"appuifw.app.body™
Dialog
"appuifw.<dialog_function=>""

Left softkey Right softkey
Tappuifw.app. menu” "appuifw.app.exit_key _handler™

Figure 5.2: The different parts of the screen when using the 'normal’ layout

14 Chapter 5. User Interface and Graphics

&% Puthon

T

I Abc

2003, 14:01:19) [C] on
symbian_s60

Python 2.2.2 (#0, Mar 23

Python 2.2.2 (#0, Mar 23
2005, 14:01:19) [C] on
symbian_s60

Tupe "copyright”, "credits”
or “license” for more

Python 2.2.2 (#0, Mar 23
2005, 14:01:19) [C] on
symbian_s60

Tupe "copyright”, "credits”
or "license” for more

. e .. . ||information. information.
T""F_'_E_ cnpl,!rlght » "credits {InteractiveConsole) {InteractiveConsole)
or "license” for more 33 33
information.
{InteractiveConsole)
¥
Options Exit||Options Exit

Figure 5.3: Ul layouts. left: 'normal’, middle: ’large’, right: 'full’

e popup_menu

A dialog becomes visible as soon as the corresponding Python function has been called. The function
returns with the eventual user input or information on the cancellation of the dialog. Form is an exception;
it is shown when its execute method is called.

5.1.2 Softkeys

The softkeys are managed by the underlying S60 Platform. When no dialog is visible, the right softkey is
bound to application exit and the left one represents an Options menu. Python for S60 offers an interface
for manipulating the menu and for binding the Exit key to a Python-callable object (see Section 5.1.4).

The native code that implements a dialog also manages the softkeys of the dialog, typically OK and
Cancel. When the user input needs to be validated before accepting it and dismissing the dialog, it is
best to use Form.

5.1.3 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the appuifw
module:

available_fonts()
Returns a list (Unicode) of all fonts available in the device.

query (label, type [, im’tz’al,value])
Performs a query with a single-field dialog. The prompt is set to label, and the type of the dialog
is defined by type. The value of type can be any of the following strings:

o’ text’
e’ code’
e’ ’number’
e’date’
e’ time’
e’query’

e’float’

The type of the optional initial_value parameter and the returned input depend on the value of
type:

5.1. appuifw — Interface to the S60 GUI framework 15

eFor text fields, (*text’, *code’) it is Unicode
eFor number fields, it is numeric

eFor date fields, it is seconds since epoch rounded down to the nearest local midnight

A simple confirmation query and time query take no initial value and return True/None and seconds
since local midnight, correspondingly. All queries return None if the users cancel the dialog.

For ’float’ query the initial_value setting has no effect.

multi_query (label_1, label_2)
A two-field text (Unicode) input dialog. Returns the inputted values as a 2-tuple. Returns None if
the users cancel the dialog.

note(text[, type [, global]])
Displays a note dialog of the chosen type with text (Unicode). The default value for type is >info’,
which is automatically used if type is not set. type can be one of the following strings: ’error’,
’info’, or ’conf’.
If global (integer) is any other value than zero a global note is displayed. A global note is displayed
even if the Python application calling this function is in background. The same set of types is
supported as in standard note.

popup_menu (list [, label])
A pop-up menu style dialog. list representing the menu contents can be a list of Unicode strings
or a list of Unicode string pairs (tuples). The resulting dialog list is then a single-style or a double-
style list. A single-style list is shown in full; whereas a double-style list shows the items one at a
time. Returns None if the user cancels the operation.

selection_list(choices [, search_field=0])
Executes a dialog that allows the users to select a list item and returns the index of the chosen item,
or None if the selection is cancelled by the users. choices is a list of Unicode strings. search_field
is 0 (disabled) by default and is optional. Setting it to 1 enables a search field (find pane) that
facilitates searching for items in long lists. If enabled, the search field appears after you press a
letter key.

multi_selection_list(choices [, style="checkboz’, searchfﬁeld:O])

Executes a dialog that allows the users to select multiple list items. Returns a tuple of indexes (a
pair of Unicode strings) of the chosen items, or empty tuple if the selection is cancelled by the users.
choices is a list of Unicode strings. style is an optional string; the default value being ’checkbox’.
If >checkbox’ is given, the list will be a checkbox list, where empty checkboxes indicate what items
can be marked. The other possible value that can be set for style is ’checkmark’. If ’checkmark’
is given, the list will be a markable list, which lists items but does not indicate specifically that
items can be selected. To select items on a markable list, use the Navigation key to browse the
list and the Edit key to select an item. For example views on checkbox and markable lists, see
Figure 5.4. search_field is 0 (disabled) by default and is optional. Setting it to 1 enables a search
field (find pane) that facilitates searching for items in long lists. If enabled, the search field is
always visible with checkbox lists; with markable lists it appears by pressing a letter key.

Example:

tuple = appuifw.multi_selection_list(L, style=’checkmark’, search_field=1)

5.1.4 Application Type
A single implicit instance of this type always exists when appuifw module is present and can be referred
to with the name app. New instances cannot be created by a Python program.

class Application
Instances of Application type have the following attributes:

16 Chapter 5. User Interface and Graphics

; try { try

MultiSelectio.. MultiSelectio..
T ks
O Mozart || Mozart v|
B |Verdi Verdi
O (Rossini Rossini v
B |Doninzetti Doninzetti
O | Spontini

b, | e |

| |
Ok « LCancel |0k ~ LCancel

Figure 5.4: Examples of a checkbox list (left) and a markable list (right)

body
The UI control that is visible in the application’s main window. Currently either Text, a
Listbox object, Canvas, or None.

exit_key_handler
A callable object that is called when the user presses the Exit softkey. Setting
exit_key_handler to None sets it back to the default value.

menu
This is a list of the following kinds of items:

e(title, callback) which creates a regular menu item
o(title, ((title, callback) [..])) which creates a submenu

title (Unicode) is the name of the item and callback the associated callable object. The
maximum allowed number of items in a menu, or items in a submenu, or submenus in a menu
is 30.

Example:

appuifw.app.menu = [(u"Item 1", iteml),
(u"Submenu 1",
((u"Subitem 1", subiteml),
(u"Subitem 2", subitem2)))]

screen
The screen area used by an application. See Figure 5.3 for example screens. The appearance of
the application on the screen can be affected by setting one of the following values: ’normal’,
’large’, and ’full’.
Examples:
appuifw.app.screen=’normal’ # (a normal screen with title pane and softkeys)
appuifw.app.screen=’large’ # (only softkeys visible)
appuifw.app.screen="full’ # (a full screen)
title
The title the application that is visible in the application’s title pane. Must be Unicode.

focus
A callable object that is called with integer as parameter (0 = focus lost, 1 = focus regained)
when the application receives focus or it is switched to background. Focus is received e.g. when
the application is switched from background to foreground or when the focus is regained from
screensaver. Similarly when the screensaver is displayed, focus is lost.
Examples:

>>> import appuifw
>>> def cb(fg):

5.1.

appuifw — Interface to the S60 GUI framework 17

if(fg):

print "foreground"
else:

print "background"

>>> appuifw.app.focus=cb

>>> # switch to background, following text is printed from callback:

>>> background

>>> # switch to foreground, following text is printed from callback:

>>> foreground
Note: An improper callback can cause adverse effects. If you, for example, define a callback
which takes no parameters you will receive never-ending TypeError exceptions on the Nokia
6600.

orientation
Available only for S60 3rdEd. The orientation of the application. The orientation of the appli-
cation can be one of the following values: ’automatic’ (this is the default value), ’portrait’
or ’landscape’.

Instances of Application type have the following methods:

activate_tab(index)
Activates the tab inder counting from zero.

full_name()
Returns the full name, in Unicode, of the native application in whose context the current
Python interpreter session runs.

uid()
Returns the UID, in Unicode, of the native application in whose context the current Python
interpreter session runs.

set_exit()
Requests a graceful exit from the application as soon as the current script execution returns.

set_tabs (tab_texts [, callback=None])
Sets tabs with given names on them in the navigation bar; tab_texts is a list of Unicode
strings. When the users navigate between tabs, callback gets called with the index of the
active tab as an argument. Tabs can be disabled by giving an empty or one-item tab_texts
list.
layout (layout_id)
Note: Available from S60 2ndEd FP3 onwards (inclusive).
Returns as a tuple the size and the position of the requested layout_id. The logical lay-
outs are outlined partly in Figure 5.2. The position is given from the top left corner. The
layout_id can be one of the constants defined in module appuifw!:
EScreen
Screen.
EApplicationWindow
Window that fills the entire screen.
EStatusPane
Indicates common components for most of the applications.
EMainPane
The application main pane is used in all the applications.
EControlPane
Control pane.
ESignalPane
The signal pane is used to indicate signal strength.
EContextPane
The context pane is used to indicate an active application.
ETitlePane
Used to indicate the subject or the name of the main pane content.

IDescriptions of the values are from the S60 SDK documentation [4].

18 Chapter 5. User Interface and Graphics

EBatteryPane
The battery pane is used to indicate battery strength.

EUniversalIndicatorPane
The universal indicator pane is used to indicate items that require the user’s attention
while browsing applications.

ENaviPane
The navi pane is used to indicate navigation within an application, to provide context
sensitive information to the user while entering or editing data, or to show additional
information.

EFindPane
A fixed find pane is used with lists instead of the find pop-up window.

EWallpaperPane
Wallpaper pane.

EIndicatorPane
The universal indicator pane is used to indicate items that require the user’s attention
while browsing applications.

EAColumn

Used generally to display small sized graphics or heading texts.
EBColumn

Used generally to display large sized icons or heading texts.
ECColumn

Used generally to display data entered by the user. Overlaps with the D column.
EDColumn

Used generally to display additional icons. Overlaps with the C column.
EStaconTop

Top part of status and control panes in landscape layout.
EStaconBottom

Bottom part of status and control panes in landscape layout.
EStatusPaneBottom

Bottom part of status pane in landscape layout.
EControlPaneBottom

Bottom part of control pane in landscape layout.
EControlPaneTop

Top part of control pane in landscape layout.
EStatusPaneTop

Top part of status pane in landscape layout.
Example:

>>> import appuifw

>>> appuifw.app.layout (appuifw.EMainPane)

((176, 144), (0, 44))

>>> # size and position (x, y) of the main pane in Nokia N70

5.1.5 Form Type

Form implements a dynamically configurable, editable multi-field dialog. Form caters for advanced dialog
use cases with requirements such as free selectability of the combination of fields, possibility of validating
the user input, and automatically producing the contents of some dialog fields before allowing the closing
of the dialog.
class Form(fields [, flags=0])

Creates a Form instance. fields is a list of field descriptors: (label, type[, value]) where

label is a Unicode string

type is one of the following strings: ’text’, ’number’, date’, >time’, ’combo’ or ’float’

5.1. appuifw — Interface to the S60 GUI framework 19

value, depending on type: Unicode string, numeric, float (seconds since Unix epoch rounded down to
the nearest local midnight), float (seconds since local midnight), ([choice_label ...], index)
of float. For float’ type the initial value setting might not be shown in the UL

Form can also be configured and populated after construction. The configuration flags are visible as
an attribute. Form implements the list protocol that can be used for setting the form fields, as well as
obtaining their values after the dialog has been executed.

Instances of Form type have the following attributes:

flags
This attribute holds the values of the various configuration flags. Currently supported flags are:
FFormEditModeOnly
When this flag is set, the form remains in edit mode while execute runs.
FFormViewModeOnly
When this flag is set, the form cannot be edited at all.
FFormAutoLabelEdit
This flag enables support for allowing the end-users to edit the labels of the form fields.
FFormAutoFormEdit
This flag enables automatic support for allowing the end-users to add and delete the form
fields. Note that this is an experimental feature and is not guaranteed to work with all SDK
versions.
FFormDoubleSpaced
When this flag is set, double-spaced layout is applied when the form is executed: one field
takes two lines, as the label and the value field are on different lines.
menu

A list of (title, callback) pairs, where each pair describes an item in the form’s menu bar that
is active while the dialog is being executed. title (Unicode) is the name of the item and callback
the associated callable object.

save_hook
This attribute can be set to a callable object that receives one argument and returns a Boolean
value. It gets called every time the users want to save the contents of an executing Form dialog.
A candidate list for new form content - a list representing the currently visible state of the UT - is
given as an argument. The list can be modified by save_hook. If save_hook returns True, the
candidate list is set as the new contents of the form. Otherwise, the form Ul is reset to reflect the
field list contained in Form object.

Instances of Form type have the following methods:

execute ()
Executes the dialog by making it visible on the UL

insert (indezx, field_descriptor)
Inserts the field descriptor into the Form before the given indezx.

pop)
Removes the last field descriptor from the Form and returns it.

length()
the number of field descriptors in the form.

The subscript notation f[i] can be used to access or modify the i-th element of the form f. Same
limitations as discussed above in the context of the flag FFormAutoFormEdit apply to modifying a form
while it is executing. The ability to change the schema of a form while it is executing is an experimental
feature.

5.1.6 Text Type

Text is a text editor Ul control. For examples on the options available with Text, see Figure 5.5.

20 Chapter 5. User Interface and Graphics

Rich Text

LaF'Iai2 ” E|EII'
style bold styile italic |[Bold text with
+ uirderline shadow highlight

Red font. vellow ttalic text with

highlight, stvle
underline + highlight
rounded

Options Exit||Options Exit

Figure 5.5: Examples of the options available for Text type

Instances of Text type have the following attributes:

color
The color of the text. color supports the same color representation models as the graphics
module. For the supported color representation models, see Section 5.2.

focus
A Boolean attribute that indicates the focus state of the control. Editor control also takes the
ownership of the navigation bar, and this feature is needed to enable the usage of this control in
applications that use the navigation bar - for example, navigation tabs.

font
The font of the text. There are two possible ways to set this attribute:

eUsing a supported Unicode font, for example u"Latin12". Trying to set a font which is not
supported by the device has no effect. A list of supported fonts can be retrieved by using
appuifw.available_fonts.
Example, setting font:
t = appuifw.Text ()

t.font = u"albil7b" # sets font to Albi 17 bold
t.font = u"LatinPlainl2" # sets font to Latin Plain 12

eUsing one of the default device fonts that are associated with the following labels (plain
strings): ’annotation’, ’title’, ’legend’, ’symbol’, ’dense’, ’normal’ Example,
setting font:

t.font = "title" # sets font to the one used in titles

Example, checking the currently set font:
unicodeFont = t.font

The attribute value retrieved is always a Unicode string. If the font has been set with a label, for
example, >title’, the attribute will retrieve the font associated with that label.

highlight_color
The highlight color of the text. highlight_color supports the same color representation models
as the graphics module. For the supported color representation models, see Section 5.2.

style
The style of the text. The flags for this attribute are defined in the appuifw module. These flags
can be combined by using the binary operator |. The flags can be divided into two types: text
style and text highlight. Text style flags can be freely combined with each other. However, one or
more text style flags can be combined with only one text highlight flag. The flags are:

Text style:

5.1. appuifw — Interface to the S60 GUI framework 21

STYLE_BOLD
Enables bold text.

STYLE_UNDERLINE
Enables underlined text.

STYLE_ITALIC
Enables italic text.

STYLE_STRIKETHROUGH
Enables strikethrough.

Text highlight:

HIGHLIGHT _STANDARD
Enables standard highlight.

HIGHLIGHT_ROUNDED
Enables rounded highlight.

HIGHLIGHT_SHADOW
Enables shadow highlight.

Only one highlight is allowed to be used at once. Therefore, it is possible to combine only one
highlight with one or more text styles.

Examples:

t = appuifw.Text()

These and other similar values and combinations are valid:

t.style = appuifw.STYLE_BOLD

t.style = appuifw.STYLE_UNDERLINE

t.style = appuifw.STYLE_ITALIC

t.style = appuifw.STYLE_STRIKETHROUGH

t.style = (appuifw.STYLE_BOLD|
appuifw.STYLE_ITALIC|
appuifw.STYLE_UNDERLINE)

These values are valid:

t.style = appuifw.HIGHLIGHT_STANDARD

t.style = appuifw.HIGHLIGHT_ROUNDED

t.style = appuifw.HIGHLIGHT_SHADOW

This combination is NOT valid:

Invalid code, do not try!

t.style = (appuifw.HIGHLIGHT_SHADOW|appuifw.HIGHLIGHT_ROUNDED)
Instances of Text type have the following methods:

add (text)
Inserts the Unicode string text to the current cursor position.

bind (event_code, callback)
Binds the callable Python object callback to event event_code. The key codes are defined in the
key_codes library module. The call bind(event_code, None) clears an existing binding. In the
current implementation the event is always passed also to the underlying native UI control.

clear ()
Clears the editor.

delete([pos:o, length:len()])
Deletes length characters of the text held by the editor control, starting from the position pos.

get_pos()
Returns the current cursor position.

len()
Returns the length of the text string held by the editor control.

22 Chapter 5. User Interface and Graphics

get([pos:O, length=len()])
Retrieves length characters of the text held by the editor control, starting from the position pos.

set (text)
Sets the text content of the editor control to Unicode string text.

set_pos (cursor_pos)
Sets the cursor to cursor_pos.

5.1.7 Listbox Type

icons in
 Listhox

fax

home
telephone
email
computer
calendar

F o 9 |k

Options Exit

Figure 5.6: Listbox with icons

An instance of this UTI control type is visible as a listbox, also known as a list in Symbian, that can be
configured to be a single-line item or a double-item listbox. Figure 5.6 shows a single-line item Listbox
with icons. For more information on the MBM and MIF formats, see Section 5.1.8.

class Listbox (list, callback)
Creates a Listbox instance. A callable object callback gets called when a listbox selection has
been made. 1list defines the content of the listbox and can be one of the following;:

oA normal (single-line item) listbox: a list of Unicode strings, for example [unicode_string
iteml, unicode_string item2]

oA double-item listbox: a two-element tuple of Unicode strings , for exam-
ple [(unicode_string iteml, unicode_string itemldescription), (unicode_string
item2, unicode_string item2description)]

eA normal (single-line item) listbox with graphics: a two-element tuple consisting of
a Unicode string and an Icon object, for example [(unicode_string iteml, iconl),
(unicode_string item2, icon2)].

eA double-item listbox with graphics: a three-element tuple consisting of
two Unicode strings and one Icon object, for example [(unicode_string
iteml, unicode_string itemldescription, iconl), (unicode_string item2,
unicode_string item2description, icon2)]

Example: To produce a normal (single-line item) listbox with graphics:

iconl = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 28, 29)
icon2 = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 40, 41)
entries = [(u"Signal", iconl),

(u"Battery", icon2)]
1b = appuifw.Listbox(entries, lbox_observe)

Instances of Listbox type have the following methods and properties:

5.1. appuifw — Interface to the S60 GUI framework 23

bind (event_code, callback)
Binds the callable Python object callback to event event_code. The key codes are defined in the
key_codes library module. The call bind(event_code, None) clears an existing binding. In the
current implementation the event is always passed also to the underlying native UI control.

current ()
Returns the currently selected item’s index in the Listbox.

set_list (list [, current])
Sets the Listbox content to a list of Unicode strings or a list of tuples of Unicode strings. The
accepted structures of list are the same as in the Listbox constructor. The optional argument
current is the index of the focused list item.

size
The size of the Listbox as a tuple (width, height) - Read only. Only on S60 3rd Ed, and higher.

position
The coordinates (as a tuple) of the top left corner of the Listbox - Read only. Only on S60 3rd
Ed. and higher.

5.1.8 Icon Type

An instance of Icon type encapsulates an icon to be used together with a Listbox instance. Note that
currently Icon can only be used with Listbox (see Section 5.1.7).

MBM is the native Symbian OS format used for pictures. It is a compressed file format where the files
can contain several bitmaps and can be referred to by a number. An .mbg file is the header file usually
associated with an .mbm file, which includes symbolic definitions for each bitmap in the file. For example,
an ‘avkon.mbm’ file has an associated index file called ‘avkon.mbg’, which is included in S60 SDKs. For
more information on the MBM format and the bitmap converter tool, see [4] and search the topics with
the key term ”"How to provide Icons”; this topic also points you to the Bitmap Converter tool that can
be used for converting bitmaps into the MBM format.

S60 2" Edition FP3 introduces a new format for icons called Multi-Image File (MIF). This format is
very similar to the MBM format and also contains several compressed files. The files to be compressed
should be in Scalable Vector Graphics Tiny (SVG-T) format. For more information on the SVG format,
see Scalable Vector Graphics (SVG) 1.1 Specification [10].

class Icon(filename, bitmap, bitmapMask)
Creates an icon. filename is a Unicode file name and must include the whole path. Note that
MBM and MIF (MIF only in S60 2nd Edition FP3) are the only file formats supported. bitmap
and bitmapMask are integers that represent the index of the icon and icon mask inside that file
respectively.

Example: The following builds an icon with the standard signal symbol:

icon = appuifw.Icon(u"z:\\system\\data\\avkon.mbm", 28, 29)

5.1.9 Content_handler Type

An instance of Content_handler handles data content by its MIME type.

class Content_handler([callback])
Creates a Content_handler instance. A Content_handler handles data content by its MIME
type. The optional callback is called when the embedded handler application started with the open
method finishes.

Instances of Content_handler type have the following methods:

open(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the
particular MIME type. The handler application is embedded in the caller’s thread. The call to

24 Chapter 5. User Interface and Graphics

this function returns immediately. When the handler application finishes, the callback that was
given to the Content_handler constructor is called.

open_standalone (filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the
particular MIME type. The handler application is started in its own process. The call to this
function returns immediately. Note that callback is not called for applications started with this
method.

5.1.10 Canvas Type

Canvas is a Ul control that provides a drawable area on the screen and support for handling raw key
events. Canvas supports the standard drawing methods that are documented in Section 5.2.

class Canvas([redmwfcallback:]\fone, event_callback=None, resizefcallback:None])
Constructs a Canvas. The optional parameters are callbacks that are called when specific events
occur.

Note: Watch out for cyclic references here. For example, if the callbacks are methods of an object
that holds a reference to the Canvas, a reference cycle is formed that must be broken at cleanup
time or the Canvas will not be freed.

redraw_callback is called whenever a part of the Canvas has been obscured by something, is then
revealed, and needs to be redrawn. This can typically happen, for example, when the user switches
away from the Python application and back again, or after displaying a pop-up menu. The callback
takes as its argument a four-element tuple that contains the top-left and the bottom-right corner
of the area that needs to be redrawn. In many cases redrawing the whole Canvas is a reasonable
option.

event_callback is called whenever a raw key event is received. There are three kinds of key
events: EEventKeyDown, EEventKey, and EEventKeyUp. When a user presses a key down, events
EEventKeyDown and EEventKey are generated. When the key is released, an EEventKeyUp event is
generated.

The argument to the event_callback is a dictionary that contains the following data for key events:

e’ type’: one of EEventKeyDown, EEventKey, or EEventKeyUp
e’keycode’: the keycode of the key
e’ scancode’: the scancode of the key

e’modifiers’: the modifiers that apply to this key event

Each key on the keyboard has one or more scancodes and zero or more keycodes associated with it.
A scancode represents the physical key itself and a keycode is the result of state-related operating
system defined processing done on the key. For keys that correspond to a symbol in the current
character set of the phone, the keycode is equal to the code of the corresponding symbol in that
character set. For example, if you are using the Nokia Wireless Keyboard (SU-8W), pressing the
key A will always produce the scancode 65 (ASCII code for an upper case A), but the keycode
could be either 65 or 91 (ASCII code for a lower case A) depending on whether or not the Shift
key is pressed or Caps Lock is active.

The key_codes module contains definitions for the keycodes and scancodes. See Figure 5.7 for the
codes of the most common keys on the phone keypad.

Some keys are handled in a special way:

oA short press of the Edit key causes it to stay down, meaning that no EEventKeyUp event is
sent. The event is only sent after a long press.

eDetecting presses of the Voice tags key or the Power key is not supported.

olf the right softkey is pressed, the appuifw.app.exit_key_handler callback is always exe-
cuted.

5.1. appuifw — Interface to the S60 GUI framework 25

Key Keycode Scancode

1. EKeyLeftSoftkey EScancodeLeftSoftkey
2. EKeyYes EScancodeYes

3. EKeyMenu EScancodeMenu

4. EKey0...9 EScancode0...9

5. EKeyStar EScancodeStar

6. EKeyLeftArrow EScancodeLeft Arrow
7. EKeyUpArrow EScancodeUpArrow

8. EKeySelect EScancodeSelect

9 EKeyRightArrow EScancodeRightArrow

10. EKeyDownArrow EScancodeDownArrow
11. EKeyRightSoftkey ~EScancodeRightSoftkey

12. EKeyNo EScancodeNo

13. EKeyBackspace EScancodeBackspace
14. EKeyEdit EScancodeEdit

15. EKeyHash EScancodeHash

Figure 5.7: Keycodes and scancodes for phone keys usable from Python applications

There is no way to prevent the standard action of the Hang-up key, the Menu key, the Power key
or the Voice tags key from taking place.

resize_callback is called when screen size is changed when the Canvas rect size has been changed.
The callback takes as its argument a two-element tuple that contains the new clientRect width and
height.

Instances of Canvas type have the following attribute:

size
A two-element tuple that contains the current width and height of the Canvas as integers.

Instances of Canvas type have the same standard drawing methods that are documented in Section 5.2.

5.1.11 InfoPopup Type

Note: Available from S60 3rd Ed onwards (inclusive).

An instance of InfoPopup type encapsulates an UT tip widget. This widget can be placed on top of other
widgets to provide e.g. usage information to the user. The widget disappears as soon as the device’s

26 Chapter 5. User Interface and Graphics

user presses any key or when the timer behind the InfoPopup is triggered.

class InfoPopup()
Creates an InfoPopup.

show (text, [(a;coord, y—coord), time_shown, time_before, alignment])
Show text (Unicode) in the InfoPopup. The optional parameters are the location (a tuple from
the upper left corner), the time the popup is visible, time_shown (in milliseconds), the time before
the popup, time_before (in milliseconds) and the alignment of the popup.

The default values are: the coordinates (0, 0), time_shown 5 seconds, time_before 0 seconds and
for the alignment appuifw.EHLeftVTop.

The alignment can be one of the constants defined in module appuifw?:

EHLeftVTop

Object is left and top aligned.
EHLeftVCenter

Object is left aligned and centred vertically.
EHLeftVBottom

Object is left aligned and at the bottom.
EHCenterVTop

Object is centre aligned horizontally and at the top.
EHCenterVCenter

Object is centred horizontally and vertically.
EHCenterVBottom

Object is centred horizontally and at the bottom.
EHRightVTop

Object is right and top aligned.
EHRightVCenter

Object is right aligned and centred vertically.
EHRightVBottom

Object is right aligned and at the bottom.

hide()
Hides the popup immediately.

Example:

>>> import appuifw

>>> i=appuifw.InfoPopup()

>>> i.show(u"Here is the tip.", (0, 0), 5000, O, appuifw.EHRightVCenter)
>>>

5.2 graphics — A graphics related services package

The graphics module provides access to the graphics primitives and image loading, saving, resizing, and
transformation capabilities provided by the Symbian OS.

The module is usable from both graphical Python applications and background Python processes. How-
ever, background processes have some restrictions, namely that plain string symbolic font names are not
supported in background processes since background processes have no access to the Ul framework (see
also Section 5.2.4).

For an example on using this module, see [6].

Functions Image.open and Image.inspect and Image object methods load, save, resize, and
transpose are not available for S60 1st Edition.

2Descriptions of the values are from the S60 SDK documentation [4].

5.2. graphics — A graphics related services package 27

5.2.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the graphics
module:

screenshot ()
Takes a screen shot and returns the image in Image format.

5.2.2 Image Class Static Methods

The following Image class static methods are defined in the graphics module:

Image.new(size [, mode="RGB16’])
Creates and returns a new Image object with the given size and mode. size is a two-element tuple.
mode specifies the color mode of the Image to be created. It can be one of the following:

e’ 1’: Black and white (1 bit per pixel)

e’L’: 256 gray shades (8 bits per pixel)
©’RGB12’: 4096 colors (12 bits per pixel)

¢’ RGB167: 65536 colors (16 bits per pixel)

¢’ RGB’: 16.7 million colors (24 bits per pixel)

Image.open(filename)
Note: Not supported in S60 1st Edition!

Returns a new Image object (mode RGB16) that contains the contents of the named file. The
supported file formats are JPEG and PNG. The file format is automatically detected based on file
contents. filename should be a full path name.

Image.inspect (filename)
Note: Not supported in S60 1st Edition!

Examines the given file and returns a dictionary of the attributes of the file. At present the
dictionary contains only the image size in pixels as a two-element tuple, indexed by key ’size’.
filename should be a full path name.

5.2.3 Image Objects

An Image object encapsulates an in-memory bitmap.

Note on asynchronous methods: Methods resize, transpose, save, and load have an optional callback
argument. If the callback is not given, the method call is synchronous; when the method returns,
the operation is complete or an exception has been raised. If the callback is given, the method calls
are asynchronous. If all parameters are valid and the operation can start, the method call will return
immediately. The actual computation then proceeds in the background. When it is finished, the callback
is called with an error code as the argument. If the given code is 0, the operation completed without
errors, otherwise an error occurred.

It is legal to use an unfinished image as a source in a blit operation; this will use the image data as it is
at the moment the blit is made and may thus show an incomplete result.

Image objects have the following methods:
resize(newsize[, callback=None, keepaspect:O])
Note: Not supported in S60 1st Edition!

Returns a new image that contains a resized copy of this image. If keepaspect is set to 1, the resize
will maintain the aspect ratio of the image, otherwise the new image will be exactly the given size.

If callback is given, the operation is asynchronous, and the returned image will be only partially
complete until callback is called.

28 Chapter 5. User Interface and Graphics

transpose (direction [, callback=None])
Note: Not supported in S60 1st Edition!

Creates a new image that contains a transformed copy of this image. The direction parameter can
be one of the following:

oFLIP_LEFT_RIGHT: Flips the image horizontally, exchanging left and right edges.
oFLIP_TOP_BOTTOM: Flips the image vertically, exchanging top and bottom edges.
eROTATE_90: Rotates the image 90 degrees counterclockwise.

eROTATE_180: Rotates the image 180 degrees.

eROTATE_270: Rotates the image 270 degrees counterclockwise.

If callback is given, the operation is asynchronous and the returned image will be only partially
complete until callback is called.

load (filename [, callback=None])
Note: Not supported in S60 1st Edition!

Replaces the contents of this Image with the contents of the named file, while keeping the current
image mode. This Image object must be of the same size as the file to be loaded.

If callback is given, the operation is asynchronous and the loaded image will be only partially
complete until callback is called. filename should be a full path name.

save (filename [,callback:None, format=None, quality="75, bpp=24, compressz'on:’default’])
Note: Not supported in S60 1st Edition!

Saves the image into the given file. The supported formats are JPEG and PNG. If format is not
given or is set to None, the format is determined based on the file name extension: ’.jpg’ or
> . jpeg’ are interpreted to be in JPEG format and ’.png’ to be in PNG format. filename should
be a full path name.

When saving in JPEG format, the quality argument specifies the quality to be used and can range
from 1 to 100.

When saving in PNG format, the bpp argument specifies how many bits per pixel the resulting file
should have, and compression specifies the compression level to be used.

Valid values for bpp are:

e1: Black and white, 1 bit per pixel
e8: 256 gray shades, 8 bits per pixel
e24: 16.7 million colors, 24 bits per pixel

Valid values for compression are:

e’best’: The highest possible compression ratio, the slowest speed
o’ fast’: The fastest possible saving, moderate compression
e’no’: No compression, very large file size

e’default’: Default compression, a compromise between file size and speed

If callback is given, the operation is asynchronous. When the saving is complete, the callback is
called with the result code.

stop()
Stops the current asynchronous operation, if any. If an asynchronous call is not in progress, this
method has no effect.

Image objects have the following attribute:

size
A two-element tuple that contains the size of the Image. Read-only.

5.2. graphics — A graphics related services package 29

5.2.4 Common Features of Drawable Objects

Objects that represent a surface that can be drawn on support a set of common drawing methods,
described in this section. At present there are two such objects: Canvas from the appuifw module and
Image from the graphics module.

Options

Many of these methods support a set of standard options. This set of options is as follows:
e outline: The color to be used for drawing outlines of primitives and text. If None, the outlines of
primitives are not drawn.

e fill: The color to be used for filling the insides of primitives. If None, the insides of primitives are
not drawn. If pattern is also specified, fill specifies the color to be used for areas where the pattern
is white.

e width: The line width to be used for drawing the outlines of primitives.

e pattern: Specifies the pattern to be used for filling the insides of primitives. If given, this must be
either None or a 1-bit (black and white) Image.

Coordinate representation

The methods accept an ordered set of coordinates in the form of a coordinate sequence. Coordinates
can be of type int, long, or float. A valid coordinate sequence is a non-empty sequence of either

e Alternating x and y coordinates. In this case the sequence length must be even, or

e Sequences of two elements, that specify x and y coordinates.
Examples of valid coordinate sequences:

e (1, 221L, 3, 4, 5.85, -3): A sequence of three coordinates
e [(1,2211),(3,4),[5.12,6]): A sequence of three coordinates

e (1,5): A sequence of one coordinate

[(1,5)]: A sequence of one coordinate

[[1,5]]: A sequence of one coordinate

Examples of invalid coordinate sequences:

Invalid code, do not use!

e []: An empty sequence
e (1,2,3): Odd number of elements in a flat sequence
e [(1,2),(3,4),None]: Contains an invalid element

e ([1,2],3,4): Mixing the flat and nested form is not allowed

30 Chapter 5. User Interface and Graphics

Color representation

All methods that take color arguments accept the following two color representations:

e A three-element tuple of integers in the range from 0 to 255 inclusive, representing the red, green,
and blue components of the color.

e An integer of the form Oxrrggbb, where rr is the red, gg the green, and bb the blue component of
the color.

For 12 and 16 bit color modes the color component values are simply truncated to the lower bit depth. For
the 8-bit grayscale mode images the color is converted into grayscale using the formula (2*r+5*g+b)/8,
rounded down to the nearest integer. For 1-bit black and white mode images the color is converted into
black (0) or white (1) using the formula (2*r+5*g+b)/1024.

Examples of valid colors:

0xf£f££00: Bright yellow

0x004000: Dark green

(255,0,0): Bright red
e 0: Black

255: Bright blue

(128,128,128): Medium gray

Examples of invalid colors:

Invalid code, do not use!

e (0,0.5,0.9): Floats are not supported

o *#f£80c0’: The HTML color format is not supported

(-1,0,1000): Out-of-range values

(1,2): The sequence is too short

e [128,128,192]: This is not a tuple
Font specifications
A font can be specified in three ways:

e None, meaning the default font

e a Unicode string that represents a full font name, such as u’LatinBold19’

a plain string symbolic name that refers to a font setting currently specified by the Ul framework
e as a two or three element tuple, where

— the first element is the font name (unicode or string) or None for default font
— the second element is the font height in pixels or None for default size

— the third (optional) element is the flags applied to the font or None for default options.
The flags are the following:

e FONT_BOLD bold

5.2. graphics — A graphics related services package 31

FONT_ITALIC italic

FONT_SUBSCRIPT subscript

FONT_SUPERSCRIPT superscript

FONT_ANTIALIAS forces the font to be antialiased

FONT_NO_ANTIALIAS forces the font to not be antialiased

[R

You can combine the flags with the binary or operator “—”. For example, the flags setting
FONT_BOLD|FONT_ITALIC will produce text that is both bold and italic.

Note: Antialiasing support is only available for scalable fonts.
You can obtain a list of all available fonts with the appuifw module function available_fonts.

The symbolic names for UI fonts are:

e ’normal’
e ’dense’
e ’title’
e ’symbol’
e ’legend’

e ’annotation’

Since background processes have no access to the Ul framework, these symbolic names are not supported
in them. You need to specify the full font name.

Common Methods of Drawable Objects

line(coordseq [, <options>])
Draws a line connecting the points in the given coordinate sequence. For more information about
the choices available for options, see Section 5.2.4.

polygon (coordseq [, <options>])
Draws a line connecting the points in the given coordinate sequence, and additionally draws an
extra line connecting the first and the last point in the sequence. If a fill color or pattern is specified,
the polygon is filled with that color or pattern. For more information about the choices available
for options, see Section 5.2.4.

rectangle (coordseq [, <options>])
Draws rectangles between pairs of coordinates in the given sequence. The coordinates specify the
top-left and the bottom- right corners of the rectangle. The sequence must have an even number
of coordinates. For more information about the choices available for options, see Section 5.2.4.

ellipse (coordseq [, <options>])
Draws ellipses between pairs of coordinates in the given sequence. The coordinates specify the top-
left and bottom-right corners of the rectangle inside which the ellipse is contained. The sequence
must have an even number of coordinates. For more information about the choices available for
options, see Section 5.2.4.

pieslice(coordseq, start, end[, <0ptz'0ns>])
Draws pie slices contained in ellipses between pairs of coordinates in the given sequence. The start
and end parameters are floats that specify the start and end points of pie slice as the starting and
ending angle in radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left
and-pi/2 is straight down. coordseq is interpreted the same way as for the ellipse method. For
more information about the choices available for options, see Section 5.2.4.

32 Chapter 5. User Interface and Graphics

arc (coordseq, start, end[, <0ptz'0ns>])

Draws arcs contained in ellipses between pairs of coordinates in the given sequence. The start
and end parameters are floats that specify the start and end points of pie slice as the starting and
ending angle in radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left
and-pi/2 is straight down. coordseq is interpreted the same way as for the ellipse method. For
more information about the choices available for options, see Section 5.2.4.

point (coordseq [, <options>])

Draws points in each coordinate in the given coordinate sequence. If the width option is set to
greater than 1, draws a crude approximation of a circle filled with the outline color in the locations.
Note that the approximation is not very accurate for large widths; use the ellipse method if you
need a precisely formed circle. For more information about the choices available for options, see
Section 5.2.4.

clear([colorzOmﬁﬁﬁ])

Sets the entire surface of the drawable to the given color, white by default.

text (coordseq, text [ﬁll:O, font:None])

Draws the given text in the points in the given coordinate sequence with the given color (default
value is black) and the given font. The font specification format is described above.

measure_text (text [font:None, mazwidth=-1, mazradvance=-1])

Measures the size of the given text when drawn using the given font. Optionally you can specify
the maximum width of the text or the maximum amount the graphics cursor is allowed to move
(both in pixels).

Returns a tuple of three values:
ethe bounding box for the text as a 4-tuple: (topleft-x, topleft-y, bottomright-x, bottomright-y)
ethe number of pixels the graphics cursor would move to the right

ethe number of characters of the text that fits into the given maximum width and advance

blit(image[,target:(0,0), source=((0,0),image.size), mask=None, scale:()])

5.3

Copies the source area from the given image to the target area in this drawable. The source area
is copied in its entirety if mask is not given or is set to None. If the mask is given, the source area
is copied where the mask is white. mask can be either None, a 1-bit (black and white) Image or
(on S60 2nd edition FP2 and later) a grayscale Image, and must be of the same size as the source
image. A grayscale mask acts as an alpha channel, i.e. partial transparency.

target and source specify the target area in this image and the source area in the given source. They
are coordinate sequences of one or two coordinates. If they specify one coordinate, it is interpreted
as the upper-left corner for the area; if they specify two coordinates, they are interpreted as the
top-left and bottom-right corners of the area.

If scale is other than zero, scaling is performed on the fly while copying the source area to the
target area. If scale is zero, no scaling is performed, and the size of the copied area is clipped to
the smaller of source and target areas.

Note that a blit operation with scaling is slower than one without scaling. If you need to blit the
same Image many times in a scaled form, consider making a temporary Image of the scaling result
and blitting it without scaling. Note also that the scaling performed by the blit operation is much
faster but of worse quality than the one done by the resize method, since the blit method does
not perform any antialiasing.

camera — Interface for taking photographs and video recording

Note: Not available for S60 1st Edition.

The camera module enables taking photographs and video recording.

The following data items for state information are available in camera:

5.3.

camera — Interface for taking photographs and video recording 33

EOpenComplete
The opening of the video clip has succeeded.

ERecordComplete
The video recording has completed (not called on explicit stop_recording call).

EPrepareComplete
The device is ready to begin video recording.

The camera module has the following functions?:

cameras_available()
Returns the number of cameras available in the device.

image_modes ()
Returns the image modes supported in the device as a list of strings, for example: [’RGB12’,
’RGB’, ’JPEG_Exif’, ’RGB16°].

image_sizes()
Returns the image sizes (resolution) supported in the device as a list of (x, y) tuples, for example:
[(640, 480), (160, 120)].

flash_modes()
Returns the flash modes available in the device as a list of strings.

max_zoom()
Returns the maximum digital zoom value supported in the device as an integer.

exposure_modes ()
Returns the exposure settings supported in the device as a list of strings.

white_balance_modes()
Returns the white balance modes available in the device as a list of strings.

takefphoto([mode, size, flash, zoom, exposure, white_balance, position])
Takes a photograph and returns the image in:

1.Image format (for more information on Image format, see Chapter 5.2 graphics Module) or
2.Raw JPEG data®.

The settings listed below describe all settings that are supported by the camera module. You can
retrieve the mode settings available for your device by using the appropriate functions listed at the
beginning of this chapter.

emode is the display mode of the image. The default value is *’RGB16°. The following display
modes are supported for the Image format pictures taken:

—?RGB12°: 4096 colors (12 bits per pixel)
—’RGB16°: 65536 colors (16 bits per pixel). Default value, always supported
—’RGB’: 16.7 million colors (24 bits per pixel)

For the JPEG data format images the following modes are supported:
—?JPEG_Exif’: JPEG Exchangeable image file format
—>JPEG_JFIF’: JPEG File Interchange Format

Note that there is variety between the devices and the supported formats.

esize is the resolution of the image. The default value is (640, 480). The following sizes are
supported, for example, in Nokia 6630: (1280, 960), (640, 480) and (160, 120).

eflash is the flash mode setting. The default value is none’. The following flash mode settings
are supported:

—’none’
No flash. Default value, always supported

3Descriptions for some of the values are based on information found in S60 SDK documentation [4]
4For more information, see e.g. http://en.wikipedia.org/wiki/JPEG.

34 Chapter 5. User Interface and Graphics

—’auto’
Flash will automatically fire when required
—’forced’
Flash will always fire
—fill_in’
Reduced flash for general lighting
—’red_eye_reduce’
Red-eye reduction mode
ezoom is the digital zoom factor. It is assumed to be on a linear scale from 0 to the maximum
zoom value allowed in the device. The default value is 0, meaning that zoom is not used.

ecxposure is the exposure adjustment of the device. Exposure is a combination of lens aperture
and shutter speed used in taking a photograph. The default value is >auto’. The following
exposure modes are supported:
—’auto’
Sets exposure automatically. Default value, always supported
—’night’
Night-time setting for long exposures
—’backlight’
Backlight setting for bright backgrounds
—’center’
Centered mode for ignoring surroundings
ewhite_balance can be used to adjust white balance to match the main source of light. The
term white balance refers to the color temperature of the current light. A digital camera
requires a reference point to represent white. It will then calculate all the other colors based
on this white point. The default value for white_balance is >auto’ and the following white
balance modes are supported:
—’auto’
Sets white balance automatically. Default value, always supported
—’daylight’
Sets white balance to normal daylight
—’cloudy’
Sets white balance to overcast daylight
—’tungsten’
Sets white balance to tungsten filament lighting
—>fluorescent’
Sets white balance to fluorescent tube lighting
—>flash’
Sets white balance to flash lighting
eposition is the camera used if the device, such as Nokia 6680, has several cameras. In Nokia
6680, the camera pointing to the user of the device is located in position 1, whereas the one
pointing away from the user is located in position 0. The default position is 0.

If some other application is using the camera, this operation fails, with error SymbianError:
KErrInUse. Invoking this function right after the device boot, might result in SymbianError:
KErrNotReady error.

start_finder (callable [, backlight_on=1, size=main_pane_size])

Starts the camera viewfinder and binds a callback to receive Image format feed. When a new
viewfinder frame is ready the callback is invoked with the Image as parameter.

The optional parameter backlight_on determines whether the device backlight is kept on when
the camera view finder is in operation. By default, the backlight is on (1 = on, 0 = off).

The optional parameter size (of type tuple, e.g. (176, 144)) can be used to change the size of
the Image received in the callback. The default size is the same as the application’s main pane
size.

Example view finder code:

5.3.

camera — Interface for taking photographs and video recording 35

>>> import appuifw

>>> import camera

>>> def cb(im):
appuifw.app.body.blit (im)

>>> import graphics

>>> appuifw.app.body=appuifw.Canvas ()
>>> camera.start_finder(cb)

>>>

stop_finder()
Stops the viewfinder.

release()
Releases the camera — After invocation other applications can access the camera hardware.

start_record (filename, callable)
Starts video recording. filename is the file where the video clip is saved and callable will be called
with possible error code (int) and status information (see data in module camera) as parameter.

Prior calling this function, the view finder needs to be started.

stop_record()
Stops the video recording.

5.4 keycapture — Interface for global capturing of key events.

The keycapture module offers an API for global capturing of key events. The keycapture module
provides the KeyCapturer object as a tool for listening the events.

The KeyCapturer object uses a callback method to report the key events. The callback method is called
each time any of the specified keys is pressed.

Currently the keycapture module does not support capturing separate key-up or key-down events.

Note: Keycapture module requires capability SwEvent to work in 3rd Edition devices.

5.4.1 Module Level Constants

The following constants are defined in the keycapture module:

all_keys
A list of all key codes defined in the key_codes module.

5.4.2 KeyCapturer objects

KeyCapturer object takes a callback method as a mandatory parameter to its constructor. The callback
method must have one single parameter for forwarding the key code of the captured key.

There can be several KeyCapturer objects existing at the same time.

KeyCapturer object has following methods and properties:

keys
List of keys to be captured. Can be read and written.
Example:

keys = (key_codes.EkeyUpArrow,)
keys = keycapture.all_keys

36 Chapter 5. User Interface and Graphics

forwarding
Specifies whether captured key events are forwarded to other applications or not. Either has value
1 or 0. Can be read and written.

start()
Starts the actual capturing of key events.

stop()
Stops the actual capturing of key events.

last_key()
Returns last key code that is captured.

5.5 topwindow — Interface for creating windows that are shown on top of
other applications.

The topwindow module offers an API for creating windows that are shown on top of other applications
and managing the content of these windows. Images can be inserted into the windows and the background
color, visibility, corner type and shadow of the window can be manipulated.

topwindow extension does not provide sophisticated drawing capabilities by any means but rather relies
on services provided by the graphics extension: topwindow allows graphics Image objects to be put
into the windows that are represented by TopWindow objects.

TopWindow object provides mainly only two services: TopWindow objects can be shown or hidden and
Images can be put into the windows. However, several images can be added into one TopWindow object
and several TopWindow objects can be created and shown. Since the images can be manipulated using
the graphics extension this makes it possible to create many kind of content to the TopWindow objects.

5.5.1 TopWindow objects

class TopWindow()
Create a TopWindow object.

TopWindow objects have the following methods and properties:

show ()
Shows the window. The window is not shown until show() is called.

hide()
Hides the window.

add_image (image, position)
Inserts an image object graphics.Image into the window. The position of the image is specified
by the (position) parameter. If only the coordinates of the top left corner are specified, like (x1,
y1) the image is not resized. If four coordinates are given, like(x1, y1, x2, y2), the image is resized
to fit to the specified area. Example:

add_image (image, (10,20))
add_image (image, (10,20,20,30))

remove_image (¢mage [,posz’tion])
Removes the image from the window. Mandatory parameter image must be a graphics.Image
object. Parameter position may specify the top-left corner coordinates of the image or the rectan-
gular area of the image. If only image parameter is given, all the pictures representing this image
object are removed from the window. If both parameters are given, only the picture that matches
both parameters is removed.
Example:

remove_image (image)
remove_image (image, (10,10))

5.5. topwindow — Interface for creating windows that are shown on top of other applications. 37

remove_image (image, (10,10,20,20))

position
Specifies the coordinates of the top left corner of the window. Can be read and written.
Example:

position = (10, 20)

size
Specifies the size of the window. Can be read and written.
Example:
size = (100, 200)
images

The images inserted into the window. Defined as a list of tuple objects. Each tuple contains a
graphics.Image object and the position of the image. The position may specify the top-left coor-
dinate of the image and optionally also the bottom-right coordinate of the image. Parameter (x,y)
specifies the top-left coordinate, but does not resize the image while parameter like (x1,y1,x2,y2)
specifies both the top-left and bottom-right coordinates and possibly also resizes the image. Can
be read and written. Also see the add_image () and remove_image () methods.

Example:

images = [(imagel, (x1,y1)), (image2, (x1,y1,x2,y2)), (image3, (50,50,100,100))]

sets the window content to be 3 images. image2 and image3 are possibly resized while the imagel
is not)

shadow
Specifies if the shadow of the window is shown and the length of the shadow. Can be read and
written. Setting shadow = 0 makes the shadow invisible.
Example: shadow = 5

corner_type
Specifies the corner type of the window. Can be read and written. Corner type can be one of the
following values:
esquare
ecornerl
ecorner?2
ecorner3

ecornerb

Example: corner_type = square

maximum_size
Returns the maximum size of the window as a tuple (width, height). Read only property.

background_color
The background color of the window as an integer (e.g. Oxaabbcc). The two greatest hexadecimal
digits specify the red, the next two specify the blue and the last ones specify the green color. Can
be read and written.
Example: background_color = Oxffffff (sets the white color)

visible
Can be set to 0 or 1. 1 means that window is visible, 0 means that it is not. Can be read and
written. Also see the show and hide methods.

5.6 gles — Bindings to OpenGL ES

38 Chapter 5. User Interface and Graphics

The gles module provides Python bindings to OpenGL ES 2D/3D graphics C API. OpenGL ES is a
standard defined by Khronos Group (www.khronos.org). Currently S60 Python supports OpenGL ES
version 1.0 from Series 60 version 2.6 onwards. Support for OpenGL ES version 1.1 should also become
available in the near future, and both versions are documented here. OpenGL ES 1.1 will require Series
60 version 3.0 or newer.

For detailed description of the OpenGL ES API see the official specifications at
http://www.khronos.org/opengles. This documentation contains only information that is specific
to the S60 Python bindings to OpenGL ES. Where possible, the conventions of the PyOpenGL desktop
OpenGL bindings (http://pyopengl.sourceforge.net) have been followed.

The display of OpenGL ES graphics is handled by separate module, glcanvas. See glcanvas module
documentation for more information.

5.6.1 array type

gles module defines array type for representing numerical data of specific GL type. array objects are
convenient when numerical data for OpenGL ES calls is specified in Python code. Class array also
defines the standard Python sequence methods so its instances can be iterated and individual items in
arrays can be manipulated easily.

class array (type, dimension, sequence)
Constructs a new array object that contains the given type of data that is taken from sequence.
Parameter dimension specifies how many items there are in each array element. The dimension
information is stored with the array and is used by those functions that need to know the element
size of the input data, for example, if colors are specified with three or four components. The
dimension does not affect the length of an array or its indexing: both are based on individual
items.

Value of type must be one of the following: GL_FLOAT, GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, or GL_FIXED.

The data in sequence is flattened before it is used to fill the array. When type is GL_FLOAT, the
sequence can contains floats or integers. With all other types, sequence must only contain integers.
Values in sequence are casted in C to the requested type, so if the requested type cannot properly
represent all the values the results can be unexpected.

_len__QO
Returns the number of items in the array. Note that array dimension does not affect the
calculation of the length.

__getitem__ (index)
Returns the item in array with indez. Note that array dimension does not affect indexing.

__setitem__ (indez, value)
Sets the value of the item in position indexr to value. Note that array dimension does not
affect indexing.

5.6.2 Error handling

Errors generated by the API calls are handled similarly as in PyOpenGL: all GL errors are reported
as Python exceptions of type gles.GLerror. The wrapper code checks GL error status after each call
automatically. There is no Python binding for glGetError call.

5.6.3 Differences to OpenGL ES C API

Certain OpenGL ES functions require special handling in Python, mainly because of the pointer pa-
rameters in the C API. Additionally, special Python versions for some OpenGL ES functions have been
added. Both of sets of functions are documented below. If a function is not listed here its Python version
should exactly match the C version defined in the official OpenGL ES 1.0 and 1.1 specifications.

5.6. gles — Bindings to OpenGL ES 39

OpenGL ES 1.0

glColorPointer (size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array
object is used, the type and dimension of its data are ignored and size and type are used instead.

glColorPointerub (sequence)
Special Python version of glColorPointer that accepts either a gles.array object or some other
Python sequence object. Other parameters of glColorPointer will be determined as follows:

esize If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.

o{ype GL_UNSIGNED_BYTE
estride 0

glColorPointerf (sequence)
Special Python version of glColorPointer that behaves exactly as glColorPointerub except
GL_FLOAT is used as type.

glColorPointerx (sequence)
Special Python version of glColorPointer that behaves exactly as glColorPointerub except
GL_FIXED is used as type.

glCompressedTexImage2D (target, level, internalformat, width, height, border, imageSize, data)
Parameter data must be either a gles.array or a Python string.

glCompressedTexSubImage2D (target, level, zoffset, yoffset, width, height, format, imageSize, data)
Parameter data must be either a gles.array or a Python string.

glDeleteTextures (sequence)
Parameter sequence must be a Python sequence containing integers.

glDrawElements (mode, count, type, indices)
Parameter indices must be either a gles.array or some other Python sequence object. gles.array
objects require less processing and can be therefore slightly faster. If gles.array object is used,
the type of its data is ignored and type is used instead.

glDrawElementsub (mode, indices)
Special Python version of glDrawElements that uses length of the sequence indices as count and
GL_UNSIGNED_BYTE as type.

glDrawElementsus (mode, indices)
Special Python version of glDrawElements that uses length of the sequence indices as count and
GL_UNSIGNED_SHORT as type.

glFogv (pname, params)
Parameter params must be a Python sequence containing float values.

glFogxv(pname, params)
Parameter params must be a Python sequence containing integer values.

glGenTextures(n)
The generated texture names are returned in a Python tuple.

glGetIntegerv(pname)
The values are returned in a Python tuple.

glGetString(name)
The value is return as a Python string.

glLightModelfv(pname, params)
Parameter params must be a Python sequence containing float values.

gllLightModelxv (pname, params)
Parameter params must be a Python sequence containing integer values.

40 Chapter 5. User Interface and Graphics

gllightfv (light, pname, params)
Parameter params must be a Python sequence containing float values.

glLightxv (light, pname, params)
Parameter params must be a Python sequence containing integer values.

glLoadMatrixf (m)
Parameter m must be a Python sequence containing float values. The sequence is flattened before
its items are read.

glLoadMatrixx(m)
Parameter m must be a Python sequence containing integer values. The sequence is flattened
before its items are read.

glMaterialfv(face, pname, params)
Parameter params must be a Python sequence containing float values.

glMaterialxv(face, pname, params)
Parameter params must be a Python sequence containing integer values.

glMultMatrixf (m)
Parameter m must be a Python sequence containing float values. The sequence is flattened before
its items are read.

glMultMatrixx(m)
Parameter m must be a Python sequence containing integer values. The sequence is flattened
before its items are read.

glNormalPointer (type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array
object is used, the type of its data is ignored and type is used instead.

glNormalPointerb (sequence)
Special Python version of glNormalPointer that uses type GL_BYTE and stride 0.

glNormalPointers (sequence)
Special Python version of glNormalPointer that uses type GL_SHORT and stride 0.

glNormalPointerf (sequence)
Special Python version of glNormalPointer that uses type GL_FLOAT and stride 0.

glNormalPointerx (sequence)
Special Python version of glNormalPointer that uses type GL_FIXED and stride O.

glReadPixels(z, y, width, height, format, type)
The pixel data read is returned in a Python string.

glTexCoordPointer (size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array
object is used, the dimension and type of its data are ignored and size and type are used instead.

glTexCoordPointerb (sequence)
Special Python version of glTexCoordPointer that accepts either a gles.array object or some
other Python sequence object. Other parameters of glTexCoordPointer will be determined as
follows:

esize If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.
otype GL_BYTE
estride 0
glTexCoordPointers (sequence)

Special Python version of glTexCoordPointer that behaves exactly as glTexCoordPointerb ex-
cept GL_SHORT is used as type.

5.6. gles — Bindings to OpenGL ES 41

glTexCoordPointerf (sequence)
Special Python version of glTexCoordPointer that behaves exactly as glTexCoordPointerb ex-
cept GL_FLOAT is used as type.

glTexCoordPointerx (sequence)
Special Python version of glTexCoordPointer that behaves exactly as glTexCoordPointerb ex-
cept GL_FIXED is used as type.

glTexEnvfv (face, pname, params)
Parameter params must be a Python sequence containing float values.

glTexEnvxv (face, pname, params)
Parameter params must be a Python sequence containing integer values.

glTexImage2D (target, level, internalformat, width, height, border, format, type, pizels)
Parameter pizels must be either a Python string, a gles.array object, or graphics.Image object.
Python strings are taken as literal data with no conversion. The dimension and type of data in
gles.array objects are ignored: the raw data in the array is used.

Use of graphics.Image objects is limited to only some combinations of format and type. Ta-
ble 5.6.3 below shows the accepted combinations. To get the best results and performance, the
CFbsBitmap object in the graphics.Image object should be in the equivalent display mode, also
shown in the table below. Otherwise, the CFbsBitmap object will be first converted to the equiva-
lent display mode before reading its pixel data, which can degrade the visual quality in some cases.

Table 5.1: Legal combinations of format and type with the equivalent Symbian display mode.

format type The equivalent display mode
GL_LUMINANCE, GL_ALPHA | GL_UNSIGNED_BYTE EGray256

GL_RGB GL_UNSIGNED_BYTE EColor16M

GL_RGB GL_UNSIGNED_SHORT_5_6_5 | EColor64K

glTexSubImage2D (target, level, zoffset, yoffset, width, height, format, type, pizels)
The handling of pizels is the same as with glTexImage2D.

glVertexPointer (size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array
object is used, the dimension and type of its data are ignored and size and type are used instead.

glVertexPointerb (sequence)
Special Python version of glVertexPointer that accepts either a gles.array object or some other
Python sequence object. Other parameters of glVertexPointer will be determined as follows:

esize If sequence is an instance of gles.array, its dimensi